Networked Local Power Distribution With Nanogrids

Bruce Nordman

Lawrence Berkeley National Laboratory

April 29, 2013

BNordman@LBL.gov — nordman.lbl.gov

Slide 1 of 27

What is OSI Model equivalent for energy?

Slide 2 of 27

What is OSI Model equivalent for energy?

Slide 3 of 27

What is OSI Model equivalent for energy?

Slide 4 of 27

Power distribution

"Technology / infrastructure that moves electrons from devices where they are available to devices where they are wanted"

- Important similarities between moving bits and moving electrons
- Important differences between moving bits and moving electrons

All bits/packets different; all electrons same

Needed system requirements (from JFQ*)

- Scalable
- Resilient
- Flexible / Ad hoc
- Interoperable
- · Renewable-friendly
- · Cost-effective
- Customizable
- · Enable new features
- · Enable new applications
- Any military context
- Any non-military context

*Roege, Paul Scalable Energy Networks, Joint Forces Quarterly, #62, Q3, 2011 Slide 6 of 27

Needed system capabilities

- Scalable Optimally match supply and demand (price)
- Resilient Match reliability and quality to device needs
- Flexible /
 Enable arbitrary and dynamic connections
- Interopera
 devices, generation, storage, and "grids"
- Renewab "plug and play"; networked
- Cost-effer Efficiently integrate local renewables and
- Customiz Work
- Work with or without "the grid"
- Enable ne (or any other grid)
- Enable ne Use standard technology

*Roege, Paul, Scala Slide 7 of 27 What grid model enables this?

Traditional power distribution Grid is a single undifferentiated "pool" of power Enormous complexity suggests difficult to manage Only works because it is NOT managed

Slide 8 of 27

Fails to meet specified needs

"Distributed" power distribution

- Network of "grids" of various sizes
- · Grids are managed locally
- Generation and storage can be placed anywhere
- Interfaces between grids
 - enable isolation
 - enable exchanging power any time mutually beneficial

Slide 9 of 27

"Distributed" power distribution

- Distributed power looks a lot like the Internet
 - A network of grids ("intergrid")
- Peering exchanges can be multiple, dynamic
- With reliability at edge, core can be less reliable

· Smallest piece is "nanogrid"

Slide 10 of 27

Scaling structure: communications and power

Building/Campus Network Local Area Network

What is a Nanogrid?

"A (very) small electricity domain"

- · Like a microgrid, only (much) smaller
- Has a single physical layer (voltage; usually DC)
- Is a single administrative, reliability, quality, and price domain
- Can interoperate with other (nano, micro) grids and generation through gateways

Gateways

Controller

Storage (optional)

Loads

 Wide range in technology, capability, capacity

Slide 12 of 27

Existing nanogrid technologies

No communications

- Vehicles 12 V, 42 V, 400 V, ...
- eMerge 24 V, 380 V
- Downstream of UPS 115 VAC

With communications

- Universal Serial Bus, USB 5 V
- Power over Ethernet, PoE 48 V
- HDBaseT 48 V
- Proprietary systems

Power adapter systems (emerging)

- · Wireless power technologies
- Universal Power Adapter for Mobile Devices, UPAMD IEEE

Slide 13 of 27

Nanogrids do NOT (but Microgrids do)

- · incorporate generation
- · optimize multiple-output energy systems
 - e.g. combined heat and power, CHP
- provide a variety of voltages (both AC and DC)
- · provide a variety of quality and reliability options.
- · connect to the grid
- · require professional design / installation
- entail large costs

IEEE – Universal Power Adapter for Mobile Devices

Village example

- Start with single house car battery recharged every few days
 - Light, phone charger, TV, ...
 - Add local generation PV, wind, ...

Slide 15 of 27

Slide 16 of 27

Village example

- Start with single house car battery recharged every few days
 - Light, phone charger, TV, ...
 - Add local generation PV, wind, ...
- · Neighbors do same
 - Interconnect several houses

Village example

- Start with single house car battery recharged every few days
 - Light, phone charger, TV, ..
 - Add local generation PV, wind, ...
- Neighbors do same
 - Interconnect several houses
- School gets PV
 - More variable demand

Existence of generation, storage, households, and connections all dynamic

Slide 17 of 27 Slide 18 of 27

Village example

- Start with single house car battery recharged every few days
 - Light, phone charger, TV, ...
 - Add local generation PV, wind, ...
- Neighbors do same
- Interconnect several houses
- School gets PV
 - More variable demand
- Eventually all houses, businesses connected in a mesh
- Can consider when topology should be changed
- Existence of generation, storage, households, and connections all dynamic
- Can later add grid connection(s)

From **no electricity** to **distributed power** – skip traditional grid; Similar to **no phone** to **mobile phone** – skip landline system

Slide 19 of 27

Nanogrid operation - internal

- Loads (devices) may always get 'trickle power' to communicate
- · Loads request authority to use power (controller grants)
- · Controller sets local price (forecast) and distributes
- · Controller manages storage
- Normal operation all allocation done by loads themselves based on price
- Emergency controller can revoke/cut power
- Details technology-specific

Slide 21 of 27

Forward Operating Base Example

Nanogrid operation - external (gateways)

- Controllers discover other grids (and generation)
- Exchange interest in sharing power (price, quantity)
- · When mutually beneficial, power is exchanged
- · External prices will often affect internal ones
- Controllers may track cumulative energy, \$\$\$\$
- · Only data exchanged are price, quantity
- Visibility only to immediately adjacent grids

Slide 22 of 27

Implementation

- Initial deployment of nanogrids connected to noncommunicating power sources (grid or microgrid)
- Nanogrids can be networked to each other
- Larger installations will want one (or more) microgrids
 - Nanogrids networked to communicating microgrids
- Most (sometimes all) coordination between grids via price
- In emergencies, power links can be simply dropped
- Nanogrids do not connect directly to utility grid so microgrid islanding invisible to nanogrids
- Microgrids will need to implement standard gateways (once developed)

Why Nanogrids?

- · Bring individual devices into grid context
- · Pave way for Microgrids
 - Increase microgrid utility; enable local microgrid prices
 - Reduce microgrid cost and complexity
 - Can scale/deploy much faster than microgrids
- Enable "Direct DC" (~10% savings)
- · Better integrate with mobile devices, mobile buildings
- Help bring good electricity services to developing countries
- More secure
 - Coordinate only with immediately adjacent (directly attached) grids / devices
 - No multi-hop "routing" of power

Slide 23 of 27 Slide 24 of 27

The way forward

Research

- · Better document existing nanogrids
 - $\quad \text{Technologies, capabilities, applications, deployment, } \dots$
- Create working nanogrids loads, controllers, gateways
- Create a nanogrid simulator

Standards development

- Define a "meta-architecture" for controllers, gateways, prices, ...
- Define specific gateways (voltage, communication)
- · Define nanogrid implementation for existing technologies

Deployment

· Install hardware

Slide 25 of 27

Thank you

Slide 27 of 27

Conclusions

- · Nanogrids can optimally match supply and demand
 - Price: internally and externally
- Nanogrids can be key to success of microgrids
 - Can be deployed faster, cheaper
- Need to be standards-based, universal
- · Key missing technologies: pricing and gateways
- · Nanogrids are a "generally useful technology"
 - Like Internet

Slide 26 of 27